Mode Question Paper

Undergraduate Programme - Physics

Questions: 40
Time : 40 Minutes
Max. Marks: $\mathbf{4 0 \times 1 = 4 0}$
SHADE the correct Response viz., A, B, C, D or E in the RESPONSE SHEET. Each question carry ONE mark.

SAMPLE QUESTIONS

1) The dimensional formula for specific heat is
A) $M^{1} L^{2} T^{-2} K^{1}$
B) $\mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{-2} \mathrm{~K}^{-1}$
C) $\mathrm{M}^{0} \mathrm{~L}^{2} \mathrm{~T}^{-2}$
D) $\mathrm{M}^{0} \mathrm{~L}^{1} \mathrm{~T}^{-2} \mathrm{~K}^{-1}$
E) $\mathrm{M}^{0} \mathrm{~L}^{2} \mathrm{~T}^{-2} \mathrm{~K}^{-1}$
2) The moment of inertia of a circular disc of mass 200 g and radius 5 cm about a tangential axis normal to the plane of the disc is
A) $25 \times 10^{2} \mathrm{~g} \mathrm{~cm}^{2}$
B) $50 \times 10^{2} \mathrm{~g} \mathrm{~cm}^{2}$
C) $75 \times 10^{2} \mathrm{~g} \mathrm{~cm}^{2}$
D) $100 \times 10^{2} \mathrm{~g} \mathrm{~cm}^{2}$
E) $125 \times 10^{2} \mathrm{~g} \mathrm{~cm}^{2}$
3) A particle kept fixed on a uniformly rotating turntable has a linear speed of $20 \mathrm{~cm} / \mathrm{s}$ and linear acceleration of $20 \mathrm{~cm} / \mathrm{s}^{2}$. The particle is now shifted to a new position on the turntable so that its distance from the center is half of the original value. The new values of linear speed and linear acceleration will be
A) $10 \mathrm{~cm} / \mathrm{s}, 10 \mathrm{~cm} / \mathrm{s}^{2}$
B) $20 \mathrm{~cm} / \mathrm{s}, 20 \mathrm{~cm} / \mathrm{s}^{2}$
C) $20 \mathrm{~cm} / \mathrm{s}, 40 \mathrm{~cm} / \mathrm{s}^{2}$
D) $40 \mathrm{~cm} / \mathrm{s}, 10 \mathrm{~cm} / \mathrm{s}^{2}$
E) $40 \mathrm{~cm} / \mathrm{s}, 40 \mathrm{~cm} / \mathrm{s}^{2}$
4) A uranium- 238 nucleus, which is initially at rest, emits an alpha particle with a velocity of $1.5 \times 10^{7} \mathrm{~m} / \mathrm{s}$. Assuming that the mass of a nucleus is proportional to the mass number, the recoil velocity of the residual nucleus thorium-234 is
A) $2.56 \times 10^{5} \mathrm{~m} / \mathrm{s}$
B) $1.28 \times 10^{5} \mathrm{~m} / \mathrm{s}$
C) 0
D) $-1.28 \times 10^{5} \mathrm{~m} / \mathrm{s}$
E) $-2.56 \times 10^{5} \mathrm{~m} / \mathrm{s}$
5) The acceleration due to gravity on the surface of the moon is $1 / 6^{\text {th }}$ of that on the surface of the earth and the diameter of the moon is $1 / 4^{\text {th }}$ of that of the earth. The ratio of the escape velocity from the earth to that from the moon is
A. $\sqrt{24}$
B) $3 / 2$
C) 1
D) $2 / 3$
E) $\frac{1}{\sqrt{24}}$
6) A wave is represented by the equation $y=0.001 \mathrm{~mm}$ $\sin \left[\left(50 \mathrm{~s}^{-1}\right) \mathrm{t}+\left(2.0 \mathrm{~m}^{-1}\right) \mathrm{x}\right]$. If the wave is transverse, which of the following is false?
A) The frequency $=25 / \pi \mathrm{Hz}$
B) The wavelength $=3.14 \mathrm{~m}$
C) The wave velocity $=100 \mathrm{~m} / \mathrm{s}$
D) The amplitude $=0.001 \mathrm{~mm}$
E) The initial phase of wave $=0^{\circ}$
7) The increase in length of a wire on stretching is 0.025%. If its Poisson's ratio is 0.4 , then the $\%$ change in the diameter is \qquad
A) 0.005%
B) 0.01%
C) 0.02%
D) 0.06%
E) 0.16%
8) A beaker of circular cross section of radius 4 cm is filled with mercury upto a height of 10 cm . Find the pressure exerted at the bottom of the beaker. Atmospheric pressure $=10^{5}$ $\mathrm{N} / \mathrm{m}^{2}$ and density of mercury $=13600 \mathrm{~kg} / \mathrm{m}^{3}$
A) $1.133 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}$
B) $1.33 \times 10^{4} \mathrm{~N} / \mathrm{m}^{2}$
C) $571 \mathrm{~N} / \mathrm{m}^{2}$
D) $502 \mathrm{~N} / \mathrm{m}^{2}$
E) $67 \mathrm{~N} / \mathrm{m}^{2}$
9) The temperature of a copper block of mass 500 g rises by $10^{\circ} \mathrm{C}$) Given that the specific heat capacity of copper is $385 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~kg}^{-1}$, the heat transferred is
A) 385 J
B) 1.93 kJ
C) 11.4 kJ
D) 54.5 kJ
E) 1925 kJ
10) The direction of propagation of an electromagnetic wave is that of the vector
A) \bar{E}
B) \bar{B}
C) $\bar{E} \cdot \bar{B}$
D) $\bar{E} \times \bar{B}$
E) $\bar{B} \times \bar{E}$
11) In a hydrogen atom an electron is revolving around the nucleus with an angular frequency of 6.28 rad per $\mu \mathrm{s}$. The equivalent current is
A) 6.3×10^{-6}
B) 1.6×10^{-13}
C) 1.6×10^{-19}
D) 1.0×10^{-24}
E) 1.6×10^{-25}
12) The electrochemical equivalent of silver is $1.18 \mathrm{mg} / \mathrm{C}$) How much silver in g is deposited by a current of 10 A in 5 minutes?
A) 0.059
B) 0.393
C) 0.708
D) 3.54
E) 3540
13) A $3 \mu \mathrm{~F}$ capacitor is charged to a potential of 100 V . The energy in the capacitor is
A) $6 \times 10^{-4} \mathrm{~J}$
B) $1.5 \times 10^{-2} \mathrm{~J}$
C) $3 \times 10^{2} \mathrm{~J}$
D) $9 \times 10^{2} \mathrm{~J}$
E) $15 \times 10^{3} \mathrm{~J}$
14) Two parallel conductors carrying current 5 A each, repel with a force per unit length of $0.25 \mathrm{~N} / \mathrm{m}$. The distance between them is
A) $3 \times 10^{-2} \mathrm{~m}$
B) $2 \times 10^{-2} \mathrm{~m}$
C) $3 \times 10^{-5} \mathrm{~m}$
D) $2 \times 10^{-5} \mathrm{~m}$
E) $1 \times 10^{-5} \mathrm{~m}$
15) In the nuclear reaction ${ }_{2} \mathrm{He}^{4}+{ }_{Z} X^{A} \rightarrow{ }_{Z+2} Y^{A+3}+R$. The particle R is a/an
A) electron
B) positron
C) proton
D) neutron
E) neutrino
