Postgraduate Programme

Model Question Paper

M.Sc. (Physics)

Choose the correct answer and WRITE IN CAPITAL LETTER viz., A, B, C, D or E in the space provided with each question.

SAMPLE QUESTIONS

Section A (25 marks) - $\mathbf{2 5}$ questions

1. If the Cartesian coordinates $(\mathrm{x}, \mathrm{y}, \mathrm{z})$ of a point are $(4,3,1)$, its cylindrical polar coordinates (ρ, φ, z) will be
A) $\left(5,36.9^{\circ}, 1\right)$
B) $\left(5,53.1^{\circ}, 1\right)$
C) $(4,3,1)$
D) $\left(\sqrt{ } 7,36.9^{\circ}, 1\right)$
2. $\mathrm{V}(\mathrm{r}, \theta)=\frac{\mathrm{k} \cos \theta}{\mathrm{r}^{2}}, \bar{\nabla} V=$
A) $-\frac{k}{r^{3}}\left(2 \cos \theta \hat{e}_{r}+\sin \theta \hat{e}_{\theta}\right)$
B) $-\frac{k}{r^{3}}(2 \cos \theta+\sin \theta)$
C) $-\frac{k}{r^{3}} \sqrt{3 \cos ^{2} \theta+1}$
D) $-\frac{k}{r^{3}}\left(2 \cos \theta \hat{e}_{r}+r \sin \theta \hat{e}_{\theta}\right)$
3. The essential singularity of the differential equation: $x^{2}\left(x^{2}-1\right) y^{\prime \prime}+\frac{x}{x+1} y^{\prime}+\frac{y}{x-1}=0$ is/are at
A) $x=0$
B) $x=+1$
C) $x=-1$
D) $x=0, \pm 1$
4. The eigen values of the matrix $\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]$ are
A) 0,1
B) $+1,-1$
C) $+\mathrm{i},-\mathrm{i}$
D) $1, \mathrm{i}$
5. $\mathfrak{J}\{\mathrm{f}(\mathrm{t}-\mathrm{A})\}=\mathrm{e}^{\mathrm{i} \omega \mathrm{a}} \mathrm{F}(\omega)$ is called the ——_ property of the Fourier transformation
A) Attenuation
B) time Shifting
C) Convolution
D) Parseval
6. In emitter bias configuration for a transistor, $\mathrm{V}_{B B}=5 \mathrm{~V}, \mathrm{~V}_{C C}=15 \mathrm{~V}, \mathrm{R}_{E}=1 \mathrm{k} \Omega$ and $\mathrm{R}_{C}=2 \mathrm{k} \Omega$ The collector-emitter voltage $\mathrm{V}_{C E}$ is
A) 2.1 V
B) 4.3 V
C) 6.4 V
D) 8.6 V
7. $\overline{\bar{A} \bar{B} \bar{C}}$ is equivalent to
A) $\overline{A \cdot B \cdot C}$
В) $\bar{A} \cdot \bar{B} \cdot \bar{C}$
C) $\overline{A+B+C}$
D) $A+B+C$
8. Consider the following: Reaction: $\mathrm{HCl}_{(\mathrm{aq})}+\mathrm{NaOH}_{(\mathrm{aq})} \rightarrow \mathrm{H}_{2} \mathrm{O}_{(1)}+\mathrm{NaCl}_{(\text {aq) }}$ The rate of this reaction could be determined by monitoring the change of concentration of:
A) H^{+}
B) Cl^{-}
C) Na^{+}
D) $\mathrm{H}_{2} \mathrm{O}$
9. Which of the following gives the value stored at the address pointed to by pointer a?
()
A) a;
B) $\operatorname{val}(\mathrm{a})$;
C) $* a ;$
D) \&a;

SECTION B - 50 MARKS - (50 QUESTIONS)

SAMPLE QUESTIONS

1. A particle of mass 100 gm moves on the x -axis under the force field whose potential energy is $V=\frac{x(x-3)^{2}}{3}$. The points of stable equilibrium occur at
A) $x=3$,
B) $x=1$
C) $x=1$ and 3
D) does not exist
2. A particle moves under the influence of the potential $(x)=A / x^{2}-B / x$. The frequency of small oscillations around the equilibrium point is
A) $\sqrt{8 m A^{3} B^{4}}$
B) $8 m B^{4}$
C) $\sqrt{\frac{B^{4}}{8 m A^{3}}}$
D) $\sqrt{\frac{8 m A^{3}}{B^{4}}}$
3. Part of the equation of a plane EM wave travelling in the negative Y direction can be
A) $\mathrm{E}=\mathrm{A} \cos (\mathrm{wt}-\mathrm{ky}) \hat{\imath}$
B) $\mathrm{E}=\mathrm{A} \cos (\mathrm{wt}-\mathrm{ky}) \hat{\jmath}$
C) $\mathrm{E}=\mathrm{A} \cos (\mathrm{wt}+\mathrm{ky}) \hat{\imath}$
D) $\mathrm{E}=\mathrm{A} \cos (\mathrm{wt}+\mathrm{ky}) \hat{\jmath}$
E) $\mathrm{E}=\mathrm{A} \cos (\mathrm{ky}-\mathrm{wt}) \hat{\imath}$
4. Which of the following equation does not change from one medium to another
A) $\vec{\nabla} \cdot \vec{B}=0$
B) $\vec{\nabla} \cdot \overrightarrow{\mathrm{D}}=0$
C) $\vec{\nabla} \mathrm{x} \overrightarrow{\mathrm{E}}=-\partial \vec{B} / \partial t$
D) $\vec{\nabla} \mathrm{x} \overrightarrow{\mathrm{H}}=\partial \vec{D} / \partial t$
E) $\vec{\nabla} \cdot \overrightarrow{\mathrm{E}}=\rho / \epsilon$
5. The $A B C D$ matrix of a thin lens of focal length f is
A) $\quad\left(\begin{array}{cc}1 & 1 / f \\ 1 & 0\end{array}\right)$
B) $\left(\begin{array}{cc}1 & -1 / f \\ 0 & 1\end{array}\right)$
c) $\left(\begin{array}{cc}1 & 0 \\ -1 / f & 1\end{array}\right)$
D) $\left(\begin{array}{cc}1 & 1 / f \\ 0 & 1\end{array}\right)$
E) $\left(\begin{array}{cc}-1 / f & 1 \\ 0 & 1\end{array}\right)$
6. The electric field in a certain region is given by $\vec{E}=A(y z \hat{\imath}+x z \hat{k})$, where $\mathrm{A}=10 \mathrm{Nm}^{-2} / \mathrm{C}$ and the potential at the origin of the coordinates is 20 Volts. What will be the potential at a point $\mathrm{x}=2, \mathrm{y}=1, \mathrm{z}=1$? (all coordinates are in meters)
A) 10 Volts
B) -30 Volts
C) 30 Volts
D) - 10 Volts
E) 0 volts
7. A mathematical approach to the first law of thermo dynamics produced which equation?
A) $W+Q=U$
B) $Q=U+W$
C) $U=Q-W$
D) all the above
E) None of the above
8. A nucleus ZXA has mass M kg . If Mp and Mn denote the mass (in kg) of proton and neutron respectively, the binding energy in joule is
A) $[\mathrm{ZMp}+(\mathrm{A}-\mathrm{Z}) \mathrm{Mn}-\mathrm{M}] \mathrm{c}^{2}$
B) $\left[\mathrm{Z} M_{\mathrm{p}}+\mathrm{Z} M_{\mathrm{n}}-M\right] \mathrm{c}^{2}$
C) $M-\mathrm{Z} M_{\mathrm{p}}-(\mathrm{A}-\mathrm{Z}) M_{\mathrm{n}}$
D) $\left[M-\mathrm{Z} M_{\mathrm{p}}-(\mathrm{A}-\mathrm{Z}) M_{\mathrm{n}}\right] \mathrm{c}^{2}$
E) $\mathrm{A}[\mathrm{Mp}+\mathrm{Mn}] \mathrm{c}^{2}$
9. The eigen values of the operator L_{z} are
A) $\ell(\ell+1) \hbar^{2}$
B) $\ell(\ell+1) \hbar$
C) $m \hbar$
D) $m \hbar^{2}$ E) Zero
10. A mass M moves with speed V in the x-direction. It explodes into two pieces that go off at angles θ_{1}, θ_{2} as shown in figure. What are the magnitudes of the momenta of the two pieces?

A) $p_{1}=\frac{P \sin \theta_{2}}{\sin \left(\theta_{1}+\theta_{2}\right)}, p_{2}=\frac{P \sin \theta_{1}}{\sin \left(\theta_{1}+\theta_{2}\right)}$
B) $p_{1}=\frac{P \sin \theta_{2}}{\cos \left(\theta_{1}+\theta_{2}\right)}, p_{2}=\frac{P \sin \theta_{1}}{\cos \left(\theta_{1}+\theta_{2}\right)}$
B) $p_{1}=\frac{P \sin \theta_{2}}{\sin \left(\theta_{1}-\theta_{2}\right)}, p_{2}=\frac{P \sin \theta_{1}}{\sin \left(\theta_{1}-\theta_{2}\right)}$
D) $p_{1}=\frac{P \sin \theta_{2}}{\cos \left(\theta_{1}-\theta_{2}\right)}, p_{2}=\frac{P \sin \theta_{1}}{\cos \left(\theta_{1}-\theta_{2}\right)}$
