Ph.D. Programme in Mathematics

Model Question Paper

RESEARCH APTITUDE ASSESSMENT TEST

Time: 2 Hours

4.

A) {}

B) {0}

I.	Part A: Multiple Choice Question	ons 30) x 1 mark = 30 m	arks		
marl	ose the correct Response viz., A, B, C, I ach. Please NOTE that an incorrect rice question with 5 options, ½ th mark sh	esponse will a	attract negative ma	arking. (Fo	-	
1.	Consider the following system of equal-	uations: $x_1 + x_3 = x_1 - x_2 - x_1 + x_2 = x_1 + x_2$	= 3 t ₃ = 1 = 4		,	
	The above system of linear equations A) consistent with infinitely many so B) consistent with a unique solution C) inconsistent D) inconsistent but has many solutio E) inconsistent but has a unique solu	olutions ns			(,
2.	The eigen values of a skew-symmetr A) all zeros B) always real C) always purely imaginary D) always zero and purely imaginary E) does not always exist			()	
3.	The rank of the matrix $\begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$ is A) 0 B) 1 C) 2		E) 4	()	

Which of the following is a linearly independent set of vectors over \mathbb{R} ?

D) $\{(1,1),(2,2)\}$

C) {1,2}

E) $\{(0,0), (1,1)\}$

Max. Marks: 75

5.	Given that on tossing two fair coins one head appears. What is the probability that head appears on the other coin as well?							
	A) ½	B) 1/3	C) ¹ / ₄		/6	E) cannot	t be det	ermined
6.	A) $E[X^2]$ –	$E^2[X]$		$+E^{2}[X]$	dom variable X C) $E[X^2]$	is given by	()
7.	Which one of A) Natural n D) Complex	numbers	wing numb B) Integer E) Quater	'S	algebraically (C) Real	closed?	()
8.	Which of the	e fields is a	degree 2 e	extension of 1	$\mathbb{R}?$		()
	A) $\mathbb{Q}(\sqrt{2})$	B)	$\mathbb{Q}(i)$	C) ℝ	D) €	E) None of	the abo	ve
9.	Which one of A) constant D) rotation	B)	scaling	s on the comp C) trans about real ax		OT analytic?	()
10.	What is the GA) 5 B	order of the	e Dihedral C) 20		5 E)	None of the a	(above)
11.	Which of th A) <i>c</i>			not separable D) ℓ^{∞}		ne above	()
12.	A) $\{e_n: n \in \mathbb{R}\}$	$\mathbb{N}\} = \xi_n, \ n \in$		B) $\{(\xi_n^k): \xi\}$	out not strongly	}	()
13.	The residue A) 1	at the $z =$ B) 0	0 for the function C) πi	unction $f(z)$ D) $2\pi i$	$= \frac{1}{z^2 + z}$ is give E) de		()
14.	$u_x + u_y + A$) linear	$u^2 = f(x)$	B) ser	ferential equ	C) quasi-linea	ar	()
	D) fully no	mmear	E) no	ne of the abo	ve			

15. Which one of the following is true about the solution of the following initial value problem?

$$y' = y^{-2}(2 - 3x)$$
, $y(0) = 19$:

- A) Non-existent
- B) Trivial
- C) Infinite

- D) Unique
- E) Vacuous

16. to 30. ...

Part - B

II. Answer any 9 of the following in about 150 words each in the sheets provided with the question paper:

(9 x 5 = 45 marks)

- 1. Show that the transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ defined by T(x, y, z) = (0, x, y) is not diagonalizable by quoting relevant results.
- 2. Is the function $f(x) = \begin{cases} x \sin 1/x & x \neq 0 \\ 0 & x = 0 \end{cases}$ differentiable at x = 0? Justify your answer.
- 3. Show using induction that $1+3+5+\cdots+(2n-1)$ is a square for $n \in \mathbb{N}$.
- 4. Determine the radius of convergence of the series $\sum_{k=1}^{\infty} \frac{z^{2k}}{4^k k^k}$.
- 5. Write the iterative equation to solve the polynomial equation $x^3 + 4x 9 = 0$ numerically using Newton-Raphson Method.
- 6. Show that in an inner product space over the reals \mathbb{R} , two non-zero vectors are orthogonal if they satisfy the Pythagoras theorem.
- 7. to 12.

* * *